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ABSTRACT: Virtual screening is receiving renewed attention in drug discovery, but progress is
hampered by challenges on two fronts: handling the ever-increasing sizes of libraries of drug-like
compounds and separating true positives from false positives. Here, we developed a machine learning-
enabled pipeline for large-scale virtual screening that promises breakthroughs on both fronts. By
clustering compounds according to molecular properties and limited docking against a drug target, the full
library was trimmed by 10-fold; the remaining compounds were then screened individually by docking;
and finally, a dense neural network was trained to classify the hits into true and false positives. As
illustration, we screened for inhibitors against RPN11, the deubiquitinase subunit of the proteasome, and
a drug target for breast cancer.

■ INTRODUCTION

The last decade has seen a dramatic increase in the popularity
of virtual screening in drug discovery, driven in large part by
the ever-expanding universe of drug-like molecules and by
advances in computational technology.1−7 However, real
progress is hampered by challenges on two fronts. First, the
number of readily available commercial compounds will soon
reach 1011−1012 molecules,8 while some estimates put the
number of drug-like molecules at > 1060.4 Docking such
astronomical numbers of compounds to a given drug target is a
formidable task. Second, docking is good at screening out
inactive compounds but produces an excessive number of false
positives.2,4,5,9 The present study was designed to achieve
breakthroughs on both of these fronts.
One strategy to tackle an astronomical number of

compounds is library trimming, if it is done without losing
potential hits. Compound clustering is a promising approach,
whereby one can either select a fraction of the clusters that are
most likely to contain hits or select a representative
subpopulation for each cluster so as to preserve the diversity
of the full library. Two practical problems have to be
addressed: what features to use for clustering and how to
cluster. Features not only have to capture essential
physicochemical properties of compounds but should also be
readily available. These properties, including log P and the
number of aromatic rings, are now retrievable from websites
such as ZINC15 (https://zinc15.docking.org/)10 or easily
produced by computer software such as the RDKit package11

and are starting to be used for compound clustering.12

Machine learning-based algorithms such as hierarchical
clustering13 and k-means clustering14 have been shown to be

powerful in drug discovery applications,15−17 but to the best of
our knowledge, they have not been used for library trimming.
Other approaches to library trimming include regression
models.18

Machine learning also holds promises in classifying
compounds into positives and negatives or separating
docking-selected hits into true and false positives.9,19−26 For
example, vScreenML9 was a decision-tree-based classifier,
trained on a data set mixing ∼4000 decoys with ∼1400
ligands extracted from complexes in the Protein Data Bank
(PDB). The input was 68 features representing protein−ligand
interactions and ligand descriptors. Other classifiers employed
neural networks, including NNscore,20 DLscore (https://
c h em r x i v . o r g / e n g a g e / c h em r x i v / a r t i c l e - d e t a i l s /
60c73dd4567dfefb56ec370b), Pafnucy,23 and OnionNet.24

Metamethods, based on the consensus of different classifiers,
are also emerging.26

Increasingly, molecular dynamics (MD) simulations have
been used to reject false positives from docking.27−30 Even
though much more expensive than docking, the potential of
classical MD simulations is still limited by the capability of
molecular mechanics (MM) force fields in modeling the
interactions and sampling the poses of protein−drug
complexes. Quantum mechanics (QM) provides an accurate
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description of molecules, and hybrid QM/MM modeling
provides a powerful tool for studying protein−drug com-
plexes.31 Our previous work has demonstrated the success of
QM/MM MD simulations in selecting inhibitors against the
SARS-CoV-2 main protease Mpro.32 The QM force field was
ANI-2x,33 which was trained by a neural network on millions
of small molecules against density functional theory energies.
Our ANI/MM MD simulations formed the end stage of a
workflow for drug discovery. The workflow started with
docking 1615 Food and Drug Administration (FDA)-approved
drugs against Mpro. The docking hits were further filtered, first
by classical MD simulations and then by ANI/MM MD
simulations, finally predicting nine Mpro inhibitors, of which at
least three are reported as active in the literature.
Here, we report a machine learning-enabled pipeline for

large-scale virtual screening. The two core components of the
pipeline are (1) library trimming by clustering and (2)
separation of docking-selected hits into true and false positives
by a dense neural network (DNN). We illustrate this pipeline
by screening for inhibitors against RPN11, the deubiquitinase
subunit of the proteasome (Figure 1), and a drug target for

breast cancer.34,35 We adapted our previous workflow32 to
produce eight RPN11 inhibitors. In comparison, with
significantly reduced computing cost, the machine learning-
enabled pipeline picked up six of these inhibitors.

■ COMPUTATIONAL METHODS
Preparation of the RPN11 Structure. RPN11 was taken

from chain 15 (non-ATPase regulatory subunit 14) of PDB
entry 5GJR, which is a cryo-EM structure of the human
proteasome.36 Missing residues 1−27 and 164−189 were built
by Modeller;37 residues outside the catalytic core domain (up

to Ser224) were trimmed. The missing Zn2+ ion at the catalytic
site was transferred from another deubiquitinylase, CSN5 (the
proteolytic subunit of the COP9 signalosome; PDB entry
5JOG38), by aligning the respective catalytic sites.39 The Ins-1
loop (residues 76−88) was modeled with 20 conformations
that were generated by the RCD+ server40 and left the active
site exposed.

RPN11-Ligand Docking. Our full library comprised
1,628,619 compounds from the ChemDiv library (www.
chemdiv.com) and 867,802 compounds from the Asinex
library (www.asinex.com). Structure data files for these 2.4
million compounds, extracted from the ZINC15 website
(https://zinc15.docking.org/),10 were converted to the
PDBQT format (for Autodock Vina41) using Open Babel
v.2.3.2,42 with the protonation states of compounds selected
for pH 7.4. The charge of the catalytic-site Zn2+ ion was set to
+2. The grid box for docking was centered at the Zn2+ ion,
with dimensions 20 × 14 × 20 Å3 chosen to be large enough to
accommodate each compound within the active site of RPN11.
In level-1 docking, the 2.4 million compounds were each
docked to RPN11 with the Ins-1 loop in the first
conformation; 101 compounds selected from level-1 docking
were then docked to RPN11 with 20 Ins-1 loop conformations.

MD Simulations. All MD simulations were carried out
using NAMD.43 The force field for RPN11 was CHARMM22
with CMAP. Force-field parameters for Zn+2 were taken from
Stote and Karplus44 and those for the topology files for ligands
were obtained from the SwissParam server.45 Each RPN11-
ligand complex was placed in a triclinic box and solvated with
the TIP3P water model.46 Na+ and Cl− were added to
neutralize the system and provide salt at 0.15 M concentration.
After 5000 steps of steepest-descent minimization, the system
was equilibrated first at constant NVT (1 ns) and then at
constant NPT (2 ns), with the solute under position restraint.
Temperature (310 K) and pressure (1 bar) were controlled by
Langevin dynamics.47 Long-range electrostatic interactions
were treated using the particle mesh Ewald method.48 The
production run was 100 ns at constant NPT without restraints.
For classifying whether a ligand was positive or negative, the

average ligand-root-mean-square-deviation (ligand-RMSD)
was calculated over 8000 snapshots evenly sampled from 20
to 100 ns of the production run, with the 20 ns snapshot (Cα
only) as the reference for RPN11 superposition. We also
calculated MM/PBSA binding free energy49 over 2000
snapshots from 80 to 100 ns. To prepare a training set for
the DNN, we also ran shorter MD simulations (10 ns
production). Here, ligand-RMSD was calculated over 800
snapshots sampled from 2 to 10 ns.
Hybrid ANI/MM MD simulations were as described in our

previous work.32 Force-field settings for the protein and
solvent were as stated above for classical simulations; the force
field for ligands was ANI-2x.33 Starting with the final snapshot
(at 100 ns) of the classical MD simulation, we ran 5 ns of
ANI/MM MD simulations. 2500 snapshots were sampled to
calculate ligand-RMSD, with the first snapshot as the
reference; 500 evenly spaced snapshots were used to calculate
MM/PBSA binding free energy.

Adaption of Workflow. The workflow to produce RPN11
inhibitors was adapted from our previous work selecting
inhibitors against the SARS-CoV-2 main protease Mpro.32 The
details of the adapted workflow are already described in the
preceding subsections. Here, we summarize the two main
changes from the previous work. First, instead of 1615 FDA-

Figure 1. Structure and function of the proteasome. The 26S
proteasome consists of a lid, base, and core particle. The lid contains a
nonredundant enzymatic activity, encoded by the RPN11 deubiqui-
tinase. A chain of red circles represent the polyubiquitin tag, which
RPN11 must first cleave from the substrate protein (orange oval).
The substrate protein is then unfolded (orange curve) and enters the
core particle, where it undergoes proteolysis (broken orange pieces).
RPN11 is shown with the catalytic site zoomed.
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approved drugs, here our initial library comprised 2.4 million
compounds collected from the ChemDiv and Asinex libraries.
Second, we added a second level of docking to account for the
conformational flexibility of the RPN11 Ins-1 loop.
Clustering Analyses. Compound clustering was based on

five molecular properties: log P, HBD, HBA, Ring, and RB.
These have been used in a recent study for clustering 197
ligands of the SARS-CoV-2 main protease.12 Extraction of
these features for millions of compounds was carried out by
scraping the ZINC15 website10 using the Requests module of
python (https://pypi.org/project/requests/) for sending
HTTP queries and the Beautiful Soup module (https://pypi.
org/project/beautifulsoup4/) for parsing HTML documents.
For clustering the 101 compounds selected by the level-1

docking, we used agglomerative hierarchical clustering.13 For a
library containing millions of compounds, we used k-means
clustering14 to reduce computational complexity. We used the
scikit-learn libraries (https://scikit-learn.org/stable/modules/
clustering.html#clustering) and wrote python scripts for
implementation.
DNN for Classifying Docking Hits. To separate true

positives from false positives in hits selected from docking, we
built a DNN in Python3.7 using the Keras package (https://
keras.io/) with the TensorFlow backend (https://www.
tensorflow.org/).50 The input to the DNN consisted of 5284
features, with 3840 of them from protein−ligand contact
properties24 and 1444 from two-dimensional (2D) and three-
dimensional (3D) descriptors of the ligand.51 Correspondingly,
the input layers had 5284 neurons, each with one feature as the
input. The output layer had a single neuron, with the output
value ranging from 0 to 1 and representing the probability of a
true positive prediction. A threshold of 0.5 was set for a true
positive prediction. Between the input and output layers, the
DNN had four fully connected hidden layers that contained
1000, 500, 100, and 10 neurons, respectively, each with a
dropout layer (at a dropout rate of 0.3) to prevent overfitting.
All neurons but one had a rectifier activation function; the
output neuron had a sigmoid activation function.

■ RESULTS

We first adapted the workflow developed in our previous
study32 to screen for inhibitors of RPN11. This workflow
involved docking 2.4 million compounds and evaluating hits by
expensive classical and hybrid quantum/classical MD simu-
lations, leading to eight true positives (Figure 2A). We then
developed a machine learning-enabled pipeline, where the
library was trimmed 10-fold before docking, and a DNN was
trained to separate true positives from false positives.

Screening for RPN11 Inhibitors by Full Docking and
Expensive MD Simulations. We used Autodock Vina41 to
dock each of the 2.4 million compounds, with dock-ready
chemical structures extracted from the ChemDiv and Asinex
libraries at the ZINC15 website (https://zinc15.docking.org/
),10 to a rigid structure of RPN11. In this “level-1” docking, for
each compound, 10 conformations generated by the rotation
of torsion angles were tested, and the one with the best Vina
score was reported. The compounds were ranked according to
Vina scores (with the best score at −9.9 kcal/mol), and a
cutoff of −9.2 kcal/mol was applied to select 101 compounds.
Next to the active site of RPN11 is a loop (residues 76−88)

known as Ins-1. This flexible loop is very important for
regulating enzymatic activity and changes conformation upon
ligand binding.52,53 We thus generated 19 additional
conformations for the Ins-1 loop (Figure S1) and carried out
level-2 docking, where each of the 101 compounds selected by
the level-1 docking was docked to RPN11 with the other 19
Ins-1 conformations. Out of the 101 compounds, we selected
48 hits that had Vina scores better than −9 kcal/mol in at least
6 of the 20 Ins-1 conformations.
The remaining task was to separate true positives from false

positives in the 48 hits. This was done in two steps. First, we
carried out 100 ns classical MD simulations. For the 48 hits, we
were able to obtain force-field parameters for 44 using the
SwissParam web server.45 True positives are expected to be
stable in the MD simulations, whereas false positives are
expected to be mobile in the binding site or leave the binding
site, leading to a high ligand-RMSD. We thus calculated the

Figure 2. Screening for RPN11 inhibitors by full docking and expensive MD simulations. (A) Workflow leading to the final selection of eight
RPN11 inhibitors. (B) Average ligand-RMSD from 20 to 100 ns of classical MD simulations. A 4 Å cutoff (horizontal dashed line) separates 19
positives from 25 negatives. The compounds are ordered according to the level-1 docking scores. Not included are four compounds with no force-
field parameters. (C) Average ligand-RMSD and MM/PBSA binding free energy for 19 compounds in classical and ANI/MM MD simulations. A 5
Å cutoff (vertical dashed line) separates 8 true positives from 11 false positives. The compounds are ordered according to increasing ligand-RMSD
in ANI/MM MD simulations. The ligand-RMSDs in classical MD simulations of these 19 compounds are also displayed as part of (B).
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average ligand-RMSD in the 20 to 100 ns portion of the
simulations (Figure 2B) and used a cutoff of 4 Å to classify 19
of the hits as positives and the other 25 as negatives.
In the second step, the 19 positives were subject to 5 ns of

hybrid ANI/MM MD simulations. Finally, based on a ligand-
RMSD cutoff of 5 Å, we selected eight ligands as true positives
(Figure 2C, top portion; Table S1). Similar to our previous
work on the SARS-CoV-2 main protease,32 the ANI/MM MD
simulations improved the binding free energies (as calculated
by the MM/PBSA method49) for a majority (5 out of 8) of the
true positives but eroded the binding free energies for a
majority (9 out of 11) of the false positives (Figure 2C, bottom
portion). Next, we use the foregoing results for RPN11 to
illustrate the design of our machine learning-enabled pipeline
for large-scale virtual screening and to assess its accuracy.
Trimming of the Full Library by k-Means Clustering.

The basic idea behind our library trimming was to cluster the
compounds and select the smallest number of clusters that
contained the largest number of positives. For this idea to

work, the positives themselves have to form a small number of
clusters; otherwise a large number of clusters have to be
retained, defeating the purpose of library trimming. In
addition, one has to use appropriate features for the clustering
to be effective. Here, we chose five molecular properties that
we dub PDARB: log P (where P denotes the partition
coefficient), number of hydrogen bond donors (HBD),
number of hydrogen bond acceptors (HBA), number of
aromatic rings (Ring), and number of rotatable bonds (RB).
We were able to extract PDARB from the ZINC15 website10

for 97 of the 101 ligands selected by the level-1 docking
(Figure 3A). For the remaining four ligands, we obtained
PDARB using the RDKit package.11 By hierarchical clustering
based on distances calculated on PDARB, the 101 ligands fell
into as few as three clusters, with 25, 48, and 28 ligands,
respectively (Figure 3B). By inspecting 2D structures and
physicochemical properties, we verified that ligands in the
same cluster are similar but those in different clusters are
distinct (Figure 3A,C). Cluster I is high in HBA and RB;

Figure 3. Hierarchical clustering of 101 compounds. (A) Values of five features (log P, HBD, HBA, Ring, and RB) for the compounds, arranged in
the same order as in (B). (B) Dendrogram displaying the clustering of the 101 compounds. Two vertical dashed lines indicate the partition into
three clusters. (C) 2D structures for selected compounds, showing similarity within a cluster but distinction between clusters.

Figure 4.Workflow for library trimming and illustration on the RPN11 target. (A) 10-fold library trimming involved two steps. First, the full library
was divided into 100 clusters by k-means clustering. From each cluster, 10 representative compounds were selected for limited docking. Second,
based on scores of the limited docking, 10 clusters were selected as making up the trimmed library for docking. (B) Optimization of the cluster
number for the RPN11 target and selection of the limited-docking cutoff score to achieve 10-fold library trimming.
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cluster II is high in log P but low in HBA; and cluster III is
high in HBD and Ring. This pilot study thus verified that
positives selected by docking indeed form a small number of
clusters and PDARB is effective for clustering.
We then tried to extract PDARB from the ZINC15

website10 for the 2.4 million compounds in our initial library
and succeeded for 1.3 million compounds. To these, we also
added the four ligands with PDARB from RDKit, so the entire
selection of 101 ligands from the level-1 docking was present in
the full library of 1.3 million compounds, allowing us to better
design and assess the library trimming protocol. We set a goal
of 10-fold trimming and used k-means for clustering the
compounds (Figure 4A).
The first step was to find the optimal number (“k”) of

clusters. To that end, we clustered the 1.3 million compounds
into 50, 100, or 200 clusters and in each case ranked the
clusters according to how many of the 101 docking-selected
ligands were found (Figure 4B). We then calculated the total
recall in the top 10% of the clusters. The total recalls were 44.3
± 4.6, 90.0 ± 2.2, and 64.3 ± 3.1 (mean ± standard deviation
among three independent runs) for k = 50, 100, and 200.
These results clearly indicated that k = 100 was the optimal
choice.
Next, with k = 100, we selected 10 or so (i.e., 10% of k)

clusters based on the Vina scores of a few ligands from each
cluster. Specifically, in each cluster, we picked the 10 ligands
closest to the cluster centroid and obtained their Vina scores
(“limited” docking; Figure 4A,B). We then tuned a cutoff for
Vina scores for cluster selection. A cluster was selected when
the best Vina score among the 10 ligands was lower than the
cutoff. With cutoffs at −8.0, −7.9, and −7.8 kcal/mol, the
number of clusters selected was 7, 11, and 12, respectively. The
middle cutoff (i.e., −7.9 kcal/mol) yielded the cluster number
closest to our target value of 10 and hence was our final choice.
With this cutoff choice, the resulting 11 clusters recalled 75 of
the 101 docking-selected ligands. Among the 101 ligands, 44
were selected by the level-2 docking and evaluated by 100 ns
MD simulations. Of these 44 ligands, 37 were recalled by the
11 selected clusters. Interestingly, the seven ligands that were
not recalled by the 10-fold trimmed library were ultimately
eliminated by either the 100 ns MD simulations (six out of
seven) or the ANI/MM MD simulations (one out of seven).
Therefore, the clustering-based trimming reduced the library
size by 10-fold without any loss of true positives.
Separating True and False Positives by a DNN. After

docking the 10-fold trimmed library (“trimmed docking”) to
select hits, separating true positives from false positives still
posed a significant challenge. We tackled this challenge by
designing a DNN. We prepared two distinct subsets of
compounds for training the DNN. Subset A consisted of top
Vina scorers; their classification as positives or negatives was
based on the ligand-RMSD in a short (10 ns) MD simulation.
In contrast, subset B was a mix of good and bad Vina scorers;
their classification as positives or negatives was based on the
Vina scores. The short length of the MD simulations
understandably leads to inaccuracies in compound classifica-
tion but is necessitated by the large number of such
simulations in making up a training set. For the 44 compounds
that we evaluated by 100 ns MD simulations, we found that the
inaccuracies of the 10 ns simulations are mainly in over-
classifying positives (22 correctly classified; 19 false positives;
and 3 false negatives). For separating true and false positives,
the ligands that we have to deal with are exactly those

represented by subset A, that is, top Vina scorers. Our hope
was that the inclusion of subset B, where good Vina scorers
were mixed with bad ones, would boost the accuracy for
separating true and false positives.
For subset A of the RPN11 target, we took the 1050 top

Vina scorers (but, for testing purpose later, excluded the 48
ligands selected by the level-2 docking) and obtained force-
field parameters for 824 of them using the SwissParam web
server.45 We carried out 10 ns MD simulations of the 824
docked RPN11-ligand complexes and used the average ligand-
RMSD from 2 to 10 ns for ligand classification. With a ligand-
RMSD cutoff of 4 Å, we labeled 523 ligands as positives and
the remaining 301 as negatives. Subset B contained 477
“positive” ligands with Vina scores in the range of −8.6 to −8.7
kcal/mol (no overlap with subset A or the test set of 48
ligands) and 699 “negative” ligands with Vina scores in the
range of −5.5 to −5.9 kcal/mol. The combined set of 2000
ligands, with exactly half labeled as positives and half labeled as
negatives, was then used to train the DNN (Figure 5). For

each ligand, the input to the DNN consisted of 5284 features
calculated on the protein−ligand docking pose. The features
included protein−ligand contact properties24 and 2D and 3D
descriptors of the ligand.51 Note that the MD simulations and
docking scores were not used as input but only used to
determine the output for the training purpose.
For the DNN, in addition to the input layer with 5284

neurons and the output layer with a single neuron, we included

Figure 5. DNN for hit classification. The input consisted of 3840
protein−ligand contact features and 1444 2D and 3D descriptors of
the ligand, all calculated on the protein−ligand docking pose. The
training set comprised subset A where compounds were labeled
according to ligand-RMSD in a 10 ns MD simulation and subset B
where compounds were labeled according to the Vina score.
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four hidden layers, with successively decreasing number of
neurons (1000, 500, 100, and 10), each with a dropout layer to
prevent overfitting. We split the combined training set of 2000
ligands into two portions at a 6:4 ratio, with the first portion
for training and the second portion for validation. Training was
carried out with 100 rounds of iterations (Figure S2), and the
neural-network weights in the final round were used for
reporting validation accuracy and for testing new ligands. For
the validation set of 800 ligands, the accuracy was 83.6%. We
also calculated accuracies for the members of the A and B
subsets separately. For the 330 subset-A ligands in the
validation set, the accuracy was 61.8%; the relatively lower
accuracy reflects the difficulty in classifying this subset based
on docking poses alone, given that all the ligands in this subset
have top Vina scores. Optimizing the accuracy for this subset is
our primary interest since our present task is to separate true
and false positives. For the 470 subset-B ligands, the accuracy
was 98.9%, a high value resulting from the well-separated Vina
scores of the ligands in this subset.
To assess whether combining subsets A and B boosted

accuracy, we also evaluated accuracy when the DNN was
trained on subset A or B only. Each subset was again split at a
6:4 ratio for training and validation. When trained with subset
A only, the accuracy was 60.9%, which is one percentage point
lower than that when subsets A and B were combined for
training. Therefore, including subset B in training indeed
boosts the accuracy for separating true and false positives.
We also benchmarked our DNN against other neural

network-based methods for separating true and false positives.
As stated above, our accuracy, as evaluated on subset A, was
61.8%. The classification accuracies for the entire subset A
(824 ligands) based on Vina scores and by OnionNet,24

NNscore,20 DLscore, and Pafnucy23 were 53.7, 51.6, 53.5,
54.0, and 55.4%, respectively (Figure S3). A null model where
523 ligands were randomly picked as true positives and the
remaining 301 ligands as false positives has an accuracy of
53.6%. Therefore, most of these alternative methods were no
better than the null model; only Pafnucy performed slightly
better than the null model, by 1.8 percentage points. Our
DNN significantly outperformed these alternative methods.
As reported above, we evaluated 44 ligands by 100 ns MD

simulations and classified 19 of these as true positives and the
rest 25 as false positives. With these 44 ligands as the test set,
the DNN trained on the combined set of 2000 ligands
predicted 13 true positives and 31 false positives, of which 9
and 21, respectively, were correct, yielding an accuracy of
68.1%. Moreover, according to the evaluation by the ANI/MM
MD simulations of 19 ligands, 6 of 8 predicted true positives
were correct, while 8 of 11 predicted false positives were
correct, amounting to an accuracy of 73.7% among the test set
of the 19 ANI/MM-evaluated ligands. In comparison, when
the DNN was trained on subset A only, the prediction
accuracy was lower, at 61.4%, for the test set of the 44 100 ns
MD-evaluated ligands, again indicating a boost in accuracy
when subset B was included in training the DNN. With the 19
ANI/MM-evaluated ligands as the test set, leaving out subset B
in the training did not affect the overall accuracy, but one less
true positive was predicted, compensated by one more correct
false positive prediction.

■ DISCUSSION
We have developed a machine learning-enabled pipeline for
large-scale virtual screening that addresses two major current

challenges (Figure 6). By trimming the full library of
compounds, docking can be focused on a small fraction that

is most likely to contain hits. By training a DNN, most of the
false positives from docking can be rejected. We have
illustrated this pipeline on the RPN11 target, but the same
design and the underlying ideas can be used to screen large
libraries against other drug targets.
In our particular application of the machine learning-enabled

pipeline, we trimmed a library of 1.3 million compounds by 10-
fold without losing any true positives. The same clustering
approach can be applied much more aggressively to trim
libraries of billions of compounds. The five features
(“PDARB”) used for clustering, log P, HBD, HBA, Ring, and
RB, are readily available and seem to be very effective. It will be
of continued interest to explore other features for clustering.
Our trimming here was based on selecting a small number of
entire clusters. A complementary approach is library dilution,
by selecting a representative subpopulation for each cluster so
as to preserve the diversity of the full library. However, a recent
study found library dilution to have a “devastating effect”
because cluster representatives scored poorly in docking.4 On
the other hand, the same study found library dilution to be
useful for postprocessing docking-selected or ranked com-
pounds. In the same spirit as library trimming, Gorgulla et al.5

used a fast docking program to screen a library of 1.3 billion
compounds and selected the top 3 million compounds for
more accurate docking by Autodock Vina.
The fact that the 101 compounds selected by level-1 docking

by Autodock Vina fall into only three clusters according to the
PDARB features might raise the concern that this docking
program is biased and restricts the diversity of potential hits.
To address this concern, we used another program, Glide
(https://www.schrodinger.com/products/glide), to dock the
10-fold trimmed library and select 75 compounds (the same
number as selected by Autodock Vina from the trimmed
library). One compound was selected by both Glide and
Autodock Vina. We then mixed the total of 149 compounds
and clustered them according to PDARB. Half of the Glide
compounds were found mixed with Vina compounds in the
same clusters, while the other half of the Glide compounds
formed two clusters in which no or a single Vina compound
was found. Finally, we used the DNN to test whether the Glide
compounds were true or false positives. The overwhelming

Figure 6. Machine learning-enabled pipeline for large-scale virtual
screening. The pipeline addresses two major challenges: library
trimming and true/false positive separation.
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majority of the Glide compounds in the two Glide-dominated
clusters were false positives, whereas 50% of those in the mixed
clusters were true positives. Therefore, ultimately Glide did not
increase the diversity of hits, indicating that Autodock Vina did
not restrict the diversity of hits selected from the particular
library for the particular protein target.
In training our DNN, we used MD simulations of relatively

short length (i.e., 10 ns). By allowing the protein and ligand
molecules to move in an explicit solvent, either to form more
stable poses or to escape from artificially constructed poses in
docking, even such short MD simulations have significant
capability in discriminating true positives from false positives.
This capability becomes especially powerful when accumulated
over a large number of compounds (824 in our case) and
learned by a DNN. Indeed, of the 44 compounds selected by
the level-2 docking and evaluated by 100 ns MD simulations,
classification based on the 10 ns simulations of the docked
complexes of these 44 compounds alone had only an accuracy
of 50%. However, by using the DNN, the accuracy increased to
68.1%. This DNN can be used to screen for other compounds
against the RPN11 target. However, for a different protein
target, one needs to re-train the DNN by following the
protocols developed for RPN11.
RPN11 inhibition prevents the proteolysis of a subset of

polyubiquitinated protein substrates and is emerging as a new
proteosome-targeting therapy against breast cancer by
perturbing protein homeostasis.34,35 Here, by hybrid ANI/
MMMD simulations, we have identified eight new compounds
as potential RPN11 inhibitors (Table S1). We hope that these
compounds will be evaluated by biochemical assays and our
machine learning-based pipeline will assist the development of
drug therapies targeting RPN11 and other proteins.
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